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Fault-tolerant Control for Nonlinear Systems with Multiple Intermittent
Faults and Time-varying Delays
Liang Cao and Youqing Wang*

Abstract: This study investigates a new fault-tolerant control method for uncertain nonlinear systems with multiple
intermittent faults and time-varying delays. The considered intermittent faults appear in sensors and actuators
simultaneously. A Markov chain is used to describe the random occurrence and disappearance of intermittent
faults. The uncertain nonlinear system with intermittent faults is augmented as a Markovian jump system. By using
H-infinity control theory and linear matrix inequality (LMI), we design fault tolerant controllers to make augmented
Markovian jump system work steadily. Several sufficient conditions for stochastic stability with given H-infinity
performance index and the existence of output-feedback controllers are derived. The effectiveness of the proposed
fault-tolerant method is validated by a continuously stirred tank reactor (CSTR).
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1. INTRODUCTION

Most industrial processes contain intermittent faults
(IFs) [1–9] and the faults usually cause great disruption
in practical systems. As a special case of faults, IFs have
been studied since the 1970’s. They occur intermittently,
remain in effect for a limited period of time, and can re-
cover without any intervention [1]. Due to these proper-
ties, IFs are becoming challenging problems in electron-
ics systems [2], network systems, aerospace aircraft [4],
communication equipment [6], and high-speed rail sys-
tems. In past decades, some results addressing IF behavior
have been studied in the fields of modeling [2], fault de-
tection [7], and dynamics characterization [1]. According
to [1,6], in practical devices and processes, IFs usually ap-
pear as weak noise and microbreaks in very early stages.
As a function of time, Fig. 1 shows the amplitude of IFs
increases and their effects become severe. Once IFs oc-
cur, their effects must be controlled as early as possible to
prevent damage in the system safety and reliability.

Fault-tolerant control (FTC) [4, 5, 8–15] and fault de-
tection [16–23] are proposed to guarantee a reliable and
acceptable performance. A number of control theories,
such as robust control [24, 25], predictive control [26],
and fuzzy control [27, 28] are widely used. A traditional
fault-tolerant control method usually deals with perma-
nent faults. Compared with the permanent faults, the oc-

Manuscript received March 8, 2017; revised July 25, 2017; accepted September 6, 2017. Recommended by Associate Editor Hongyi Li
under the direction of Editor PooGyeon Park. This study was supported by the National Natural Science Foundation of China under Grant
61374099 and Research Fund for the Taishan Scholar Project of Shandong Province of China.

Liang Cao is with the College of Information Science and Technology, Beijing University of Chemical Technology, China (e-mail:
13269226796@163.com). Youqing Wang is with the College of Electrical Engineering and Automation, Shandong University of Science
and Technology, and also the College of Information Science and Technology, Beijing University of Chemical Technology, China (e-mail:
wang.youqing@ieee.org).
* Corresponding author.

Fig. 1. The evolution of an intermittent fault.

currence of the IF exhibits special properties such as ran-
domness, intermittence, and repeatability. Owing to the
existence of these special properties, traditional fault di-
agnosis and fault tolerant control methods for addressing
PFs cannot be applied to address IFs directly. From the
viewpoint of FTC, the first hindrance is the lack of effec-
tive mathematical description. The existing intermittent
fault model is mainly Bernoulli model. In [8], a Bernoulli
distributed variable is used to model additive intermittent
sensor and actuator faults. However, it is too simple and
just can describe one fault mode and one normal mode. If
a system subjects to many kinds of intermittent faults, the
model would be no longer useful.

As typical stochastic systems, Markovian jump systems
(MJSs) [29–32] have been extensively studied in modeling
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Fig. 2. An intermittent fault described by a N-mode
Markovian jump system.

many processes where they may subject to abrupt changes
in system parameters or structures. Considering intermit-
tent nature of IFs, they can be seen as abrupt changes that
frequently occur in different modes [33]. Hence, we pro-
pose a new IF Markov model that can combine IFs and
MJSs together, and further discuss the intermittent feature
of IFs by MJSs. In Fig. 2, when an IF occurs, the N-mode
MJS abruptly changes from normal mode to faulty mode
with a certain probability. If the IF disappears, the MJS re-
turns to the normal mode with a certain probability. It can
also switch among faulty modes and keep its mode with
certain probability. Based on the new IF Markov model,
one can transfer the fault -tolerant control of IFs into the
stability analysis of MJS and some established results on
MJSs can be applied to simplify the analysis.

Time delays [34–37] are intrinsic component of physi-
cal systems such as networked systems and chemical pro-
cesses. Owing to its importance and practicality, it has
attracted persistent research attention in previous studies.
However, to the best knowledge of the authors, there is
no reported study on a system with both IFs and time de-
lays, which can affect each other and lead to poor per-
formance and even instability. To describe more realis-
tic processes, nonlinearity [38, 39] and parameter uncer-
tainty [29] are considered in the paper. Because complete
knowledge of transition probabilities in MJSs is difficult
or costly to obtain in practice [40], it is assumed that tran-
sition probabilities are partly known. The main contribu-
tions of this study can be summarized as follows. Accord-
ing to the unique nature of intermittent faults, the authors
first present a new and more reasonable model to describe
the intermittent faults that occur in sensors and actuators
simultaneously. Based on the new model, we use the re-
liable control method to achieve the fault tolerant control
problem. Furthermore, to describe a more practical sys-
tem, we first consider the time delays and parameter un-
certainty in nonlinear systems that subject to intermittent
sensor and actuator faults.

Notations: Rn denotes the n-dimensional space, and
Rn×m indicates the set of all n×m real matrices. E [•] is
the mathematical expectation of variable • . X > 0 means
that real symmetric matrix X is positive definite. Symbol
∗ stands for the symmetric block matrices. diag{· · ·} and
l2 [0,∞) represent a block diagonal matrix and the space of
a square summable infinite sequence, respectively. I and
0 are identity and zero matrices with compatible dimen-
sions.

2. PROBLEM FORMULATION

2.1. System description

Consider the following uncertain nonlinear systems
with time-varying delays and IFs:

x(k+1) = (A+∆A(k))x(k)

+(Ad+∆Ad (k))x(k− τ (k))
+(F+∆F (k)) f (x(k))

+B1MA (k)u(k)

+(Fd+∆Fd (k)) fd (x(k− τ (k)))
+D1w(k) ,

y(k) = MS (k) [Cx(k)+Cdx(k− τ (k))]
+D2w(k) ,

z(k) = Ex(k) ,

x(k) = l (k) ∀k ∈ [−τ̄,0] ,

(1)

x(k) ∈ Rn, y(k) ∈ Rm, u(k) ∈ Rp, w(k) ∈ Rd , and z(k) ∈
Rr are the system state, measured output, input, distur-
bance, and desired output, respectively. MA (k) , MS (k)
are intermittent fault matrices that are governed by the
Markov model. A, Ad , F , Fd , B1, C, Cd , D1, D2 and E
are known matrices with appropriate dimensions. τ (k) de-
notes the delay satisfying τ

−
⩽ τ (k)⩽ τ̄ , where l (−τ̄), · · · ,

l (0) are the initial conditions. The detailed block diagram
of system (1) is given in Fig. 3.

Fig. 3. System description with actuator and sensor inter-
mittent faults.
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2.2. Time-varying parameter uncertainties
Time-varying parameter uncertainties ∆A(k), ∆Ad (k),

∆F (k), and ∆Fd (k) are matrices of the form:[
∆A(k) ∆Ad (k) ∆F (k) ∆Fd (k)

]
= MΛ(k)

[
N1 N2 N3 N4

]
, (2)

where M, N1, N2, N3, N4 are given matrices. Λ(k)
is the unknown time-varying matrix function satisfying
ΛT (k)Λ(k)⩽ I.

2.3. Nonlinear functions
For vector-valued functions f (·) and fd (·), we assumed

that

[ f (x)−U1 (x)]
T [ f (x)−U2 (x)]≤ 0,∀x ∈ Rn, (3)

[ fd (x)−V1 (x)]
T [ fd (x)−V2 (x)]≤ 0,∀x ∈ Rn, (4)

where U1, U2, V1, V2 are known matrices. U1 −U2 and
V1 −V2 are positive definite matrices.

Remark 1: Note that the sector nonlinearities have
been intensively studied, see e.g., [38, 41]. The nonlinear
functions f , fd are said to belong to sectors. The descrip-
tions in (3) and (4) are quite general, and the well-known
Lipschitz conditions are the special case of this descrip-
tion. In what follows, for simplicity and without loss of
generality, we always assume that f (0) = 0, fd (0) = 0.

Remark 2: It should be noticed that some general non-
linear systems that based on Takagi-Sugeno (T-S) fuzzy
affine dynamic models [41] or piecewise affine dynamic
models [42] can also be used in the future owing to their
powerful identification and approximation ability to gen-
eral smooth nonlinear systems.

2.4. Fault description
MA = diag{ma1, · · · ,map} and MS = diag{ms1, · · · ,msm}

are used to describe actuator IFs and sensor IFs, respec-
tively. The i-th element mi on a diagonal matrix takes
values within [0,1] and different values mean different
fault condition. For example, if MA = {0.5,0}, the first
actuator is partially at fault and the second actuator is
absolutely at fault. Likewise, if MS = {0,1}, the first
sensor is absolutely at fault while the second sensor is
fault free. We use a N-mode Markov chain Ξ(k) to
describe N IFs. In these modes, only one stands for
fault-free conditions in all sensors and actuators, the other
modes indicate there are faults in sensors and/or actua-
tors. The transition probability from mode i to mode j
is presented as pi j = p(Ξ(k+1) = j |Ξ(k) = i ) and sat-
isfies ∑N

j=1 pi j = 1. Additionally, transition probabilities
are assumed to be partly known in our description. For
i ∈ ψ={1, · · ·N}, ψ i

K :=
{

j : pi j is known
}

, ψ i
U :={

j : pi j is unknown
}

, ψ = ψ i
K ∪ψ i

U .
Remark 3: The detailed description of our mathe-

matical model can be found in Fig. 2 and Section 2.4.

Based on the new intermittent fault model, we transfer the
fault-tolerant control of intermittent faults into the stabil-
ity analysis of Markovian jump systems, and some estab-
lished results on Markovian jump systems can be applied
to enhance the study.

Remark 4: IFs exist widely in many situations such as
net congestion and packet dropout in networked systems
[43] and electromagnetic interference in electronic sys-
tems. The majority of IFs are activated and inactivated by
themselves. Particularly, IFs are the major cause for cir-
cuit system failure [44]. We can apply the proposed FTC
strategy to many practical systems such as aircraft [4], me-
chanical devices, distributed systems [45], and communi-
cation.

2.5. Feedback controller design
Considering the following mode-dependent output

feedback controller:

xc (k+1) = Acixc (k)+Bciy(k) ,

u(k) =Ccixc (k) , (5)

where xc (k) ∈ Rc is the state of the controller and Aci, Bci,
and Cci are the controller matrices to be designed. Define

ζ (k) =
[

xT (k) xc
T (k)

]T
, (6)

and taking (1), (5), and (6) into consideration, the resulting
MJS can be deduced as follows:

ζ (k+1) = Āiζ (k)+ ĀdiT ζ (k− τ (k))
+ F̄i f (x(k))+ F̄di fd (x(k− τ (k)))
+Diw(k) ,

z(k) = Ēiζ (k) ,

(7)

where

Āi =

[
A B1MA (k)Cci

BciMS (k)C Aci

]
+ M̄Λ(k) N̄1,

M̄ =

[
M
0

]
, N̄1 =

[
N1 0

]
,

Ādi =

[
Ad

BciMS (k)Cd

]
+ M̄Λ(k) N̄2,

T =
[

I 0
]
, N̄2 =

[
N2 0

]
,

F̄i = Fi +

[
∆F
0

]
=

[
F
0

]
+ M̄Λ(k) N̄3, (8)

Di =

[
D1

BciD2

]
, N̄3 =

[
N3 0

]
,

F̄di = Fdi +

[
∆Fd

0

]
=

[
Fd

0

]
+ M̄Λ(k) N̄4,

Ei =
[

E 0
]
, N̄4 =

[
N4 0

]
.

Denote P as the transition probability matrix of resulted
MJS (7). Some elements of the matrix P are assumed to be
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unknown. It is worth pointing out that any of the elements
can be unknown in each row as long as one known element
exists. Then, for system (7) with N modes, one example
of a transition probability matrix can be written as:

P =


? p12 · · · ?
? ? · · · p2N
...

... ?
...

pN1 pN2 · · · ?

 ,
where ”?” denotes unknown elements. It should be no-
tice that any element could be unknown, but at least one
known element exists in each row. That is to say, for a
N×N matrix, the number of unknown elements can be up
to N2 −N. The objective of this work is to design mode-
dependent controller (5) for system (1), when the resulted
closed-loop system (7) satisfies both of the following two
requirements:

1) The resulted system (7) is stochastically stable in the
case of w(k) = 0.

2) The resulted system (7) has a prescribed H∞ perfor-
mance index γ , i.e., under zero initial condition

[∥z(k)∥2
2 < γ2 ∥w(k)∥2

2 ,∀w(k) ∈ l2 (0, ∞] ], (9)

where

∥z(k)∥2
2 = ∑∞

k=0 zT (k)z(k) ,

∥w(k)∥2
2 = ∑∞

k=0 wT (k)w(k) .

The definition of stochastic stability is needed for fur-
ther analysis.

Definition 1 [35]: For any Markov model initial condi-
tion r (0)∈ψ and system state initial condition ζ (0)∈Rn,
the resulted system (7) with w(k) = 0 is stochastically sta-
ble if the following formula is satisfied:

∑∞
k=0 E

(
∥ζ (k)∥2 |ζ (0) ,r (0)

)
< ∞. (10)

To derive the main results, the following lemmas are used.
Lemma 1 [39]: Given constant matrices Ω1 = ΩT

1 ,
Ω2 = ΩT

2 > 0, Ω3, Ω1 +ΩT
3 Ω−1

2 Ω3 < 0, if and only if :[
Ω1 ΩT

3
∗ −Ω2

]
< 0 or

[
−Ω2 Ω3

∗ Ω1

]
< 0.

Lemma 2 [29]: Considering matrices Ω, M, F , N with
appropriate dimensions and FT F ≤ I, for any scalar ε > 0

Ω+MFN +(MFN)T ≤ Ω+ ε−1MMT + εNT N.

Lemma 3 [8]: Let Z0 (x), Z1 (x), · · · , Zl (x) be quadratic
functions and ΦT

i = Φi, namely, Zi (x) = xT Φix. For
Φ0 −∑l

i=1 τiΦi < 0, τ1 ≥ 0, τ2 ≥ 0,. . . , , τl ≥ 0, one can
get Z0 (x)< 0, if and only if Z1 (x)≤ 0, . . ., Zi (x)≤ 0.

3. MAIN RESULTS

Theorem 1: For the resulted system (7), given scalar
γ > 0, if there exists symmetrical positive definite matrices
Pi, Q, matrices V1, V2, U1, U2, and constant scalars µ , λ ,
ε , τ−, τ̄ , such that the following matrices inequality hold:

ϒ jK =

[
ϒ1 jK ϒ2 jK

∗ ϒ3 jK

]
< 0, ∀ j ∈ ψ i

K , (11)

ϒ jU =

[
ϒ1 jU ϒ2 jU

∗ ϒ3 jU

]
< 0, ∀ j ∈ ψ i

U , (12)

then the resulted system (7) is stochastically stable and
satisfies

∥z(k)∥2
2 < γ2 ∥w(k)∥2

2 , ∀w(k) ∈ l2 (0,∞] ,

where

∑
j∈ψ i

K

pi jPj
.
= P j

K , ∑
j∈ψ i

K

pi jPi
.
= pi

KPi,

ϒ3 jK =

[
−P j

K 0
∗ −pi

KI

]
, ϒ3 jU =

[
−Pj 0
∗ −I

]
,

Π̄2 = pi
K

(
1+ τ̄ − τ−

)
T T QT − pi

K µT TŪ1T − pi
KPi,

Π̄2U =
(

1+ τ̄ − τ−
)

T T QT −µT TŪ1T −Pi.

Proof: The proof can be divided into two parts. First,
we need to prove that the output feedback controller (5)
can stablize the system (1) which subject to IFs. Be-
cause the disturbance w(k) does not affect the stability
of system, we assume w(k) = 0 in the first step. Using
Lyapunov-Krasovskii function, we obtain that (10) holds,
which means that the resulted system (7) is stochastically
stable. Second, we analyze the robustness of system (7)
in the existence of disturbance w(k). In order to en-
sure its H∞ performance, we substitute z(k) = Ēiζ (k) into
∥z(k)∥2

2. Because Theorem 1 is the sufficient condition,
using (11) and (12), we get that ∥z(k)∥2

2 < γ2 ∥w(k)∥2
2 .

That is to say, for uncertain nonlinear systems (7) with
IFs, they can work steadily and have a satisfied perfor-
mance index. In order to make the paper easy to read, we
put the proof of the Theorem 1 in Appendix A. □

Up until now, we have obtained the sufficient condi-
tion for stochastic stability and the existence of output
feedback controllers. However, because the existence of

−

(
∑

j∈ψ i
K

pi jPj + ∑
j∈ψ i

U

pi jPj

)−1

, it shall be noticed that (11)

is not a linear matrix inequality. So, Theorem 2 is obtained
to get the LMI condition and concrete controller parame-
ters.

Theorem 2: There exist fault-tolerant controllers of the
form (5), positive symmetrical matrices Pi, Q, and scalars
γ > 0, µ > 0, λ > 0, ε > 0 that satisfy (11), (12), if and
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only if, for given symmetrical matrices Yi, there exist sym-
metrical matrices Xi, matrices Φ1i, Φ2i, Φ3i, that satisfy the
following LMIs:[

Ψ1i Ψ2i

∗ Ψ3i

]
< 0, (13)[

Ȳqi Ŷ T
qi

∗ Yj

]
< 0, (14)

where

Ψ1i =
ϑi Yi

T ϑ − I 0 −µY T
i Ū2 0 0

∗ ϑ −Xi 0 −µŪ2 0 0
∗ ∗ ϖ 0 −λV̄2 0
∗ ∗ ∗ −µI 0 0
∗ ∗ ∗ ∗ −λ I 0
∗ ∗ ∗ ∗ ∗ −γ2I

 ,

ϑi = Yi
T ϑYi −Yi,ϖ =−Q−λV̄1,

Ψ2i =

Φ̃1i ΦT
2i YiET 0 YiN1

T

AT AT X̂i +CT Ms(k)
T ΦT

3i ET 0 N1
T

AT
d AT

d X̂i +CT
d Ms(k)

T ΦT
3i 0 0 N2

T

FT FT X̂i 0 0 N3
T

FT
d FT

d X̂i 0 0 N4
T

DT
1 DT

1 X̂i +DT
2 ΦT

3i 0 0 0

 ,

Φ̃1i = YiAT +ΦT
1iMA(k)

T BT
1 ,

Ψ3i =


Ỹqi − Ŷqi − Ŷ T

qi −I 0 M 0
∗ −X̂i 0 X̂T

i M 0
∗ ∗ −I 0 0
∗ ∗ ∗ −εI 0
∗ ∗ ∗ ∗ −ε−1I

 .
Some definitions of relevant matrices in (13) and (14) can
be found in Appendix B. Furthermore, the fault tolerant
controller matrices Aci, Bci, Cci are given as follows:

Ac,i =
(
Ŷ−1

qi − X̂i
)−1

×

(
Φ2i − X̂T

i AYi − X̂T
i B1Ma (k)Φ1i

−Φ3iMs (k)CYi

)
Yi

−1,

Bc,i =
(
Ŷ−1

qi − X̂i
)−1Φ3i,

Cc,i = Φ1iYi
−1.

(15)

Proof: The proof can be divided into two parts. First, it
contains uncertainties in (11) and (12) such as ∆A, ∆F , we
deal with the problem of time-varying parameter uncer-
tainties by using Lemma 2. Second, we partitioned matri-
ces and make some congruence transformations, then, we
can calculate the controller parameters by some particular
block multiplications. In order to make the paper easy to
read, we put the proof of the Theorem 2 in Appendix B. □

Remark 5: Theorem 2 shows that the feasibility of the
fault-tolerant control problem can be readily checked by
the solvability of LMI (13) and (14), which can be deter-
mined by using the Matlab LMI toolbox in a straightfor-
ward way. Actually, once we get the given values of τ̄ , τ−,
γ > 0, ε > 0, and nonlinear function matrices, the solvabil-
ity of LMI (13) and (14) have little computational burden,
which means the computation complexity is very small
and the proposed method can be utilized on-line. Summa-
rizing Theorems 1 and 2, the output feedback controller
design algorithm is proposed as follows:

Algorithm 1:
Step 1: Given time delay τ̄ , τ−, H∞ performance index

γ > 0, parameter uncertainty scalar ε > 0.
Step 2: Given nonlinear function matrices U1, U2, V1,

V2, choose fault matrices MA (k), MS (k) and partly known
transition probability matrix P.

Step 3: Choose symmetrical matrices Yi.
Step 4: Solve the LMIs (13) and (14).
Step 5: If the LMIs are feasible, calculate the controller

parameters. If the LMI is infeasible, return to Step 3.
Remark 6: The proposed method can be extended to

networked control systems (NCSs) [46]. The introduc-
tion of communication channels in the NCSs brings some
network-induced critical issues or constraints such as vari-
able transmission delays, data packet dropouts, packet dis-
order, and quantization errors, which would significantly
degrade the system performance or even destabilize the
system in certain conditions. Comparing with our method,
the data packet dropouts can be seen as the occurrence of
intermittent faults (except partly faulty), the reliable con-
trol and robust control methods in this paper can also be
used in NCSs.

4. ILLUSTRATIVE EXAMPLE

In this part, to show the effectiveness of the proposed
method, it is tested on a typical nonlinear chemical pro-
cess, a continuously stirred tank reactor (CSTR) [47, 48].
Fig. 4 gives a schematic description of a well-mixed CSTR
with an isothermal, liquid phase, multi-component chem-
ical reaction A ⇆ B −→C.

The dynamics of CSTR are modeled by the following
equations:

˙̄x1 = 1− x̄1 −Da1x̄1 −Da2x̄2
2,

˙̄x2 = Da1x̄1 − x̄2 −Da2x̄2
2 −Da3x̄2

2 + ū,

˙̄x3 = Da3x̄2
2 − x̄3,

z̄ = x̄3,

(16)

where

x̄1 =CA
/
CAF

, x̄2 =CB
/
CAF

, x̄3 =CC
/
CAF

, ū = NBF
/
FCAF

.

Detailed definitions of the parameters are given in Table 1.
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Fig. 4. Diagrammatic sketch of continuously stirred tank
reactor [47].

Table 1. The Parameters of CSTR model.

CA Concentration of species A mol·m−3

CB Concentration of species B mol·m−3

CC Concentration of species C mol·m−3

CAF Feed concentration of species A mol·m−3

NBF Molar feed rate of species B mol·s−1

F Volumetric feed rate m3·s−1

Define variables x1 = x̄1 −x1s, x2 = x̄2 −x2s, u = ū−us,
x3 = x̄3 − x3s, z = z̄− zs where x1s, x2s, x3s, us, zs indicate
the steady state values. To facilitate the analysis of the
problem, we transform the tracking problem into a stabi-
lization problem and discretize the CSTR system (16) with
a sample period dT . The discrete-time model is:

x1 (k+1) = (1−dT −dT ×Da1)x1 (k)

+2dT ×Da2 × x2sx2 (k)

+dT ×Da2x2(k)
2,

x2 (k+1) = dT ×Da1x1 (k)

−dT × (Da2 +Da3)x2(k)
2

+dT ×u+(1−dT

× (1+(2Da2 +2Da3)× x2s))x2 (k) ,

x3 (k+1) = (1−dT )x3 (k)+dT ×2Da3

× x2sx2 (k)+dT ×Da3x2(k)
2,

z = x3 (k) .
(17)

For a CSTR system with intermittent faults, disturbance,
parameter uncertainty, and time-delay, the control objec-
tive is to make the desired CC as close as possible to its
steady state value by adjusting NBF . For system (1), giv-
ing sample period dT , one has:

x(k) =
[
x1

T (k) ,x2
T (k) ,x3

T (k)
]T
,

f = dT ×

 Da2x2(k)
2

−(Da2 +Da3)x2(k)
2

Da3x2(k)
2

 ,
A =

 θA 2dT ×Da2 × x2s 0
dT ×Da1 σA 0

0 2dT ×Da3 × x2s 1−dT

 , (18)

θA = 1−dT −dT ×Da1,

σA = 1−dT × (1+2Da2 × x2s +2Da3 × x2s) .

The CSTR parameters are the same as [48]: Da1 = 3,
Da2 = 0.5, Da3 = 1, x1s = 0.3467, x2s = 0.8796, x3s =
0.8796. Other correlative parameters are chosen as fol-
lows:

Ad = Fd = D1 = dT ×0.1I,B1 = dT ×
[

0 1 0
]T
,

C = I,Cd = D2 = 0.1I,M =
[

0.1 0.1 0.1
]T
,

N1 = N2 = N3 = N4 =
[

0.1 0.1 0.1
]
,

Λ(k) = 0.6sin(k) ,F = dT × I,E =
[

0 0 1
]
,

Y0 =

 3 0 1.5
0 3 0

1.5 0 3

 , Y1 =

 2 0 1
0 3 0
1 0 3

 ,
Y2 =

 1 0.5 1
0.5 5 0
1 0 3

 , Y3 =

 1.5 0 1.5
0 3 0

1.5 0 4


w(k) =

 0.5exp(−0.01k)sin(0.01πk)
0.5exp(−0.02k)sin(0.02πk)
0.5exp(−0.03k)sin(0.03πk)

 .

(19)

Let us suppose the sample period dT = 0.01, the nonlin-
earities are bounded by:

U1 =

 0.2 0 0
0 2 0
0 0 3

 , U2 =

 0.1 0 0
0 1 0
0 0 1

 ,
V1 =

 0.2 0 0
0 2 0
0 0 3

 , V2 =

 0.1 0 0
0 1 0
0 0 1

 .
(20)

We assume the CSTR contains four modes and three
of them indicate intermittent faults in actuator and sen-
sors. Mode 1 is MA (k) = 1, MS (k) = diag{1,1,1}.
Mode 2 is MA (k) = 1, MS (k) = diag{0.8,1,0}. Mode
3 is MA (k) = 0.8, MS (k) = diag{0,0.8,1}. Mode 4 is
MA (k) = 0.8, MS (k) = diag{1,0,0.8}. When the CSTR
switches among these four modes, we design fault-tolerant
controller to guarantee a reliable and acceptable perfor-
mance. The partly known transition probability matrix is
given as follows:

P =


0.9 ? ? ?
? 0.5 ? ?
? ? 0.1 ?
? ? ? 0.1

 .
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Fig. 5. Occurrence of intermittent faults in CSTR.

Fig. 6. State response without controller.

Fig. 7. State response of the controlled CSTR.

When substituting (18), (19), and (20) into (13) and (14),
and solving the matrix inequalities (13) and (14), we can
get the controller parameters. The simulation result can be
seen in Figs. 5-12.

Fig. 8. The control signal of CSTR.

Fig. 9. Occurrence of intermittent faults in CSTR.

4.1. A few intermittent faults

Fig. 5 shows that a series of IFs have occurred in CSTR.
In Fig. 6, one can see the CSTR system is affected tremen-
dously by IFs. Most notably, the desired CC (x3 (k)) is un-
stable. Fig. 7 shows the system becomes stable quickly
and has favorable robust performance against disturbance
and mode uncertainty. Fig. 8 shows the gradually conver-
gent control input signals.

4.2. Many intermittent faults

Fig. 9 shows the CSTR is subjected to more IFs than
case 1 in sensors and actuator, the CSTR also works
steadily, the effectiveness of the proposed fault-tolerant
method is further validated. However, the CSTR state
response without the controller diverges at a faster rate.
From Figs. 10, 11, and 12, we can find that the size of
the state response and controlled input of the controlled
CSTR are bigger than case 1. It means that, if IFs occur
with greater frequency, the performance of the system is
affected more severely.
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Fig. 10. State response without controller.

Fig. 11. State response of the controlled CSTR.

Fig. 12. The control signal of CSTR.

5. CONCLUSION

This study dealt with the FTC problem of IFs for non-
linear uncertain systems with time-varying delays. Ac-
cording to the properties of IFs, the system subjected to
IFs was transformed into a augumented MJS. Meanwhile,
the FTC problem of IFs could be solved by using the sta-

bility analysis of a MJS. Moreover, the idea of robust con-
trol was used to reduce the effect of mode uncertainty and
disturbance. The output feedback controller was obtained
by using H∞ control theory and the LMI approach. Finally,
the validity of the developed method was demonstrated on
CSTR. Based on this study, in the future, we will focus
on the fault diagnosis and finite-time control problem of
intermittent fault.

APPENDIX A

In this part, we give the proof of Theorem 1.

A.1. Stability of analysis
Define a Lyapunov-Krasovskii function as follows:

V (k, i) =V1 (k, i)+V2 (k)+V3 (k) , (A.1)

where

V1 (k, i) = ηT (k)Piη (k) ,

V2 (k) =
k−1

∑
l=k−τ(k)

ηT (l)T T QT η (l) , (A.2)

V3 (k) =
k−τ−

∑
θ=k−τ̄+1

k−1

∑
l=θ

ηT (l)T T QT η (l).

By labelling the mode at the k-th and (k+ 1)-th samples
as i and j, respectively, under the condition w(k) = 0 . Pi

and Q are matrices that need to be determined. To deal
with the problem of partly known transition probabilities,
we define:

Gi = ∑
j∈ψ i

K

pi jPj + ∑
j∈ψ i

U

pi jPj = P j
K + ∑

j∈ψ i
U

pi jPj,

Pi = ∑
j∈ψ i

K

pi jPi + ∑
j∈ψ i

U

pi jPi = pi
KPi + ∑

j∈ψ i
U

pi jPi.

The difference of the Lyapunov-Krasovskii function can
be obtained as follows:

E (∆V1 (k, i)) = E
(
ζ T (k+1)Giζ (k+1)

− ζ T (k)Piζ (k)
)
, (A.3)

E (∆V2 (k))

⩽ E


ζ T (k)T T QT ζ (k)

+

k−τ−

∑
l=k−τ̄+1

ζ T (l)T T QT ζ (l)

−ζ T (k− τ (k))T T QT ζ (k− τ (k))

 , (A.4)

E (∆V3 (k))

= E


(

τ̄ − τ−
)

ζ T (k)T T QT ζ (k)

−
k−τ−

∑
l=k−τ̄+1

ζ T (l)T T QT ζ (l)

 . (A.5)
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Notice that the variable in the difference of the Lyapunov-
Krasovskii function and define:

ηT (k) =[
ζ T (k) xT ((k− τ (k))) f T (k) fd

T ((k− τ (k)))
]
.

Then, sum up the left and right side of the difference of
the Lyapunov-Krasovskii function, one can get:

E (∆V (k, i))⩽ ηT (k)Θiη (k) , (A.6)

where

Θi

=


Π1 ĀT

i P j
KĀdi ĀT

i P j
KF̄i ĀT

i P j
KF̄di

∗ ĀT
diP

j
KĀdi − pi

KQ ĀT
diP

j
KF̄i ĀT

diP
j

KF̄di

∗ ∗ F̄T
i P j

KF̄ F̄T
i P j

KF̄di

∗ ∗ ∗ F̄T
di P

j
KF̄di



+ ∑
j∈ψ i

U

pi j


Π̄1 ĀT

i PjĀdi ĀT
i PjF̄i ĀT

i PjF̄di

∗ ĀT
diPjĀdi −Q ĀT

diPjF̄i ĀT
diPjF̄di

∗ ∗ F̄T
i PjF̄ F̄T

i PjF̄di

∗ ∗ ∗ F̄T
di PjF̄di

,
Π1 = ĀT

i P j
KĀi − pi

KPi + pi
K

(
1+ τ̄ − τ−

)
T T QT,

Π̄1 = ĀT
i PjĀi −Pi +

(
1+ τ̄ − τ−

)
T T QT.

Notice that sector-bounded conditions (3) and (4), which
implies

[ f (x(k))−U1 (x(k))]
T [ f (x(k))−U2 (x(k))]⩽ 0,

[ fd (x(k))−V1 (x(k))]
T [ fd (x(k))−V2 (x(k))]⩽ 0,

or equivalently,

µ
[

ζ T (k) f T (x(k))
]

×
[

T TŪ1T T TŪ2

∗ I

][
ζ (k)

f (x(k))

]
⩽ 0,

λ
[

xT (k− τ (k)) fd
T (x(k− τ (k)))

]
×
[

V̄1 V̄2

∗ I

][
x(k− τ (k))

fd (x(k− τ (k)))

]
⩽ 0, (A.7)

where Ū1 =
(
UT

1 U2 +UT
2 U1

)/
2, Ū2 =−

(
UT

1 +UT
2

)/
2,

V̄1 =
(
V T

1 V2 +V T
2 V1

)/
2, V̄2 =−

(
V T

1 +V T
2

)/
2, µ ⩾ 0, λ ⩾

0. According to Lemma 1 and Lemma 3, it can be inferred
that the right side of (A.6) is negative, one gets:

E (∆V (k, i))< 0. (A.8)

Hence, one can conclude that:

E (∆V (k, i))⩽ λmin (Θi)ηT (k)η (k)⩽−α∥η (k)∥2,
(A.9)

where λmin (Θi) signifies the minimum eigenvalue of Θi,
and α = inf{λmin (−Θi)}. Summing (A.9) on both sides
from 0 to K, one has:

E
(
∑K

k=0

∥∥η2 (k)
∥∥)

⩽ 1
α

E (V (ζ (0) ,r (0))−V (ζ (K) ,r (K)))

⩽ 1
α

E (V (ζ (0) ,r (0)))< ∞. (A.10)

Further, it can be directly obtained that:

∑∞
k=0 E

(
ζ T (k)ζ (k) |ζ (0) ,r (0)

)
< ∞. (A.11)

Therefore, according to Definition 1, we can conclude that
the uncertain nonlinear system with time-varying delays
and IFs is stochastically stable.

A.2. performance analysis
Next, based on Appendix A.1, we focus on the analysis

of the H∞ performance of resulted system (7). In order to
evalute the H∞ performance, the following index is intro-
duced:

J = E
{
∑∞

k=0

[
zT (k)z(k)− γ2wT (k)w(k)

]}
. (A.12)

Under the zero initial condition, it is not difficult to verify
that

J =E
(
∑∞

k=0

(
zT (k)z(k)− γ2wT (k)w(k)

))
=E

(
∑∞

k=0

(
zT (k)z(k)

−γ2wT (k)w(k)+∆V (k, i)

))
+E {V (ζ (0) ,r (0))}−E{V (ζ (∞) ,r (∞))}

⩽E

(
∑∞

k=0

(
zT (k)z(k)

−γ2wT (k)w(k)+∆V (k, i)

))
.

(A.13)

Our goal is to prove that J < 0. Combining (7), (A.1), and
(A.13), it can be seen that for any nonzero w(k) ∈ l2 [0,∞)

J ⩽E
{

zT (k)z(k)− γ2wT (k)w(k)+∆V (k, i)
}

⩽E
(
ϕ T (k)Θ̄ϕ (k)

)
, (A.14)

where

ϕ T (k) =
[

ζ T (k) xT ((k− τ (k))) f T (k)

fd
T ((k− τ (k))) wT (k)

]
,

Θ̄ =


Π2 0 0 0 0
∗ −Q 0 0 0
∗ ∗ 0 0 0
∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ −γ2I

+


ĀT
i Ei

T

ĀT
di 0

F̄T
i 0

F̄T
di 0

Di
T 0


×

 P j
K + ∑

j∈ψ i
U

pi jPj 0

0 I

[ Āi Ādi F̄i F̄di Di

Ei 0 0 0 0

]
,

Π2 =
(

1+ τ̄ − τ−
)

T T QT − pi
KPi − ∑

j∈ψ i
U

pi jPi.

In order to prove J < 0, we need to prove that Θ̄ < 0 .
Therefore, applying the Schur complement to (11) and
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(12), one has:
Π̄2 0 −µT TŪ2 0 0
∗ −Q−λV1 0 −λV̄2 0
∗ ∗ −µI 0 0
∗ ∗ ∗ −λ I 0
∗ ∗ ∗ ∗ −γ2I



+


ĀT

i Ei
T

ĀT
di 0

F̄T
i 0

F̄T
di 0

Di
T 0


 P j

K + ∑
j∈ψ i

U

pi jPj 0

0 I



×
[

Āi Ādi F̄i F̄di Di

Ei 0 0 0 0

]
< 0.

The rest of the proof is similar to the proof of stochastic
stability, according to Lemma 3, one knows:

J ⩽ E
(
ϕ T (k)Θ̄ϕ (k)

)
< 0. (A.15)

It means that ∥z(k)∥2
2 − γ2 ∥w(k)∥2

2 < 0 . Hence, resulted
system (7) is stochastic stability with given H∞ perfor-
mance index. This completes the proof.

APPENDIX B

In this part, we give the proof of Theorem 2.

B.1. Parameter uncertainties analysis
First, we deal with the problem of parameter uncertain-

ties. In Theorem 1, according to the definition of time-
varying parameter uncertainties, combining (2) and (7)
with matrix inequalities (11) and (12), one can get:

ϒi = ϒiK +ϒiU

= Ξi + N̄T ΛT (k)M̄T + M̄Λ(k) N̄ < 0, (B.1)

where

N̄ =
[

N1 N2 N3 N4 0 0 0
]
,

M̄T =
[

0 0 0 0 0 MT 0
]
,

Ξi =

Π̄2 0 −µT TŪ2 0 0 Ai
T Ei

T

∗ χΞ 0 −λV̄2 0 AT
di 0

∗ ∗ −µI 0 0 Fi
T 0

∗ ∗ ∗ −λ I 0 FT
di 0

∗ ∗ ∗ ∗ −γ2I Di
T 0

∗ ∗ ∗ ∗ ∗ Ppi 0
∗ ∗ ∗ ∗ ∗ ∗ −I


,

Ppi =−

(
∑

j∈ψ i
K

pi jPj + ∑
j∈ψ i

U

pi jPj

)−1

, χΞ =−Q−λV̄1.

According to Lemma 2, for matrices Ξi, M̄, F (k), N̄ with
appropriate dimensions, F(k)T F (k) ⩽ I, and any scalar
ε > 0, it can be obtained that:

Ξi + N̄T FT (k)M̄T + M̄F (k) N̄

⩽ Ξi + ε−1M̄M̄T + εN̄T N̄ .
= Ξ̄i. (B.2)

Obviously, if Ξ̄i < 0, (11) and (12) hold.

B.2. Controller analysis
Next, our goal is to obtain the output feedback con-

troller in the form of (5) such that the closed-loop sys-
tem in (7) is asymptotically stable with an H∞ disturbance
attention level. Supposing Ξ̄i < 0, we can get concrete
controller parameters and the LMI condition. Define the
following partitioned matrices:

Pi =

[
Xi Ri

∗ X̄i

]
, P−1

i =

[
Yi Yi

∗ Ȳi

]
,

Ξ1 =

[
Yi I

Yi
T 0

]
, Gi = ∑

j∈ψ
pi jPj =

[
X̂i R̂i

∗ ˆ̄X i

]
,

Gi
−1 =

[
H1i H2i

∗ H3i

]
, Ξ2 =

[
I X̂i

0 R̂i

]
,

R̂i = Ŷ−1
qi − X̂i. (B.3)

By using the congruence transformation diag
{

Ξ1
T , I, I, I, I

Ξ2
T , I, I, I

}
, we get some block multiplications:

ΦT
1i = YiCT

ci,Φ
T
3i = BT

ciR̂
T
i ,

ΦT
2i = YiAT X̂i +ΦT

1iMA(k)
T BT

1 X̂i

+YiCT MS(k)
T ΦT

3i +YiAciR̂i. (B.4)

From (B.4), we can conclude that the output feedback con-
troller parameters can be calculated in (15). Additionally,
according to [30] and referring to its Theorem 1, we have:

H1i ⩽ Ŷqi + Ŷ T
qi − Ỹqi. (B.5)

According to block multiplications and (B.5), controller
parameters (15), LMI conditions (13) and (14) can easily
be obtained. This completes the proof.
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